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Abstract- In the real world scenario we come across the 
problem of optimization a number of times. Finding the best 
solution among the available set of solutions becomes 
mandatory. A number of numerical techniques are already 
present in literature which aims at optimizing the result 
however, they are not feasible to be used in each type of 
problem. Hence we are tending towards evolutionary 
algorithms which are more powerful tools to fetch the best 
results without using any set formulae. A Number of 
algorithms are already available in literature however they 
have a problem of getting stuck in local minima or their time 
of convergence is too high. In this paper I have implemented 
Backtracking Search Optimization Algorithm (BSA). BSA 
uses two set of populations i.e. old and new which prevents it 
from getting stuck into local minima. Its selection, crossover 
and mutation processes are different from the other methods 
and it yields the most optimized solution in lesser time. The 
claim is supported by the results of its comparison with 
different techniques and BSA is proved to give better results 
and in lesser time. 

Keywords— Backtrack Search Algorithm (BSA), global 
continuous optimization, Hybrid Ant colony-Genetic 
Algorithm (GAAPI)  

1. INTRODUCTION

Decision science and the analysis of physical system 
attach great importance to optimization techniques. 
GLOBAL optimization in operations research and computer 
science refers to the procedure of finding approximate 
solutions, which are considered the best possible solutions, 
to objective functions [3], subject to constraints on their 
variables. 

Ideally, the approximation is optimal up to a small 
constant error, for which the solution is considered to be 
satisfactory. In general, there can be solutions that are 
locally optimal, but not globally optimal; this situation 
appears more frequently when the dimension of the 
problem is high and when the function has many local 
optima [4]. Consequently, global optimization problems are 
typically quite difficult to be solved exactly, particularly in 
the context of nonlinear problems or combinatorial 
problems. Global optimization problems fall within the 
broader class of nonlinear programming. It should be noted 
that approximation algorithms are increasingly being used 
for problems where exact polynomial algorithms are known 
but are computationally expensive due to the 

dimensionality of these problems. This paper focuses on the 
general global optimization problems in the continuous 
domain, having a nonlinear objective function that is either 
unconstrained or that has simple bound constraints.    

In the last three decades, a significant research effort was 
focused on the development of effective and efficient 
stochastic methods that could reach the nearest global 
optimal solution. In this class of methods, evolutionary 
computation (EC) is one of the favourite methodologies, 
using techniques that exploit a set of potential solutions 
(called a population) to detect the optimal solution through 
cooperation and competition among the individuals of the 
population. 

These techniques often find the optima for difficult 
optimization problems faster than traditional adaptive 
stochastic search algorithms. The most frequently used 
population-based EC methods include evolutionary 
strategies genetic algorithms (GAs) [7]-[8], ant colony 
optimization (ACO/API)[9]-[10], and particle swarm 
optimization (PSO) [6]. One of the issues that probabilistic 
optimization algorithms might face in solving global, highly 
non convex optimization problems is premature 
convergence. When the objective function for an 
optimization problem is non-linear and non-differentiable, 
evolutionary algorithm (EA) techniques are typically used 
to find the global optimum. The most commonly used EA 
optimization techniques are based on swarm intelligence 
and genetic evolution. 

EAs are population-based stochastic search mechanisms 
that search for near-optimal solutions to a problem. An EA 
tries to evolve an individual into one with a better fitness 
value through a ‘trial individual’. To generate a trial 
individual, the EA chooses existing individuals as raw 
genetic material and combines these using various genetic 
operators. If the trial individual has a better fitness value 
than the original individual, the trial individual replaces it in 
the next-generation population. EAs radically differ from 
one another based on their strategies for generating trial 
individuals. Because these strategies have a considerable 
effect on their problem-solving success and speed, on-going 
efforts are aimed at developing EAs with faster and more 
successful problem-solving processes. 

The algorithm implemented in this paper, BSA, is a new 
Evolutionary Algorithm. BSA is a new nature-inspired 
algorithm is effective, fast and capable of solving different 
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numerical optimization problems with a simple structure [5]. 
BSA’s unique mechanism for generating a trial individual 
enables it to solve numerical optimization problems 
successfully and rapidly. BSA uses three basic genetic 
operators– selection, mutation and crossover – to generate 
trial individuals. BSA has a random mutation strategy that 
uses only one direction individual for each target individual, 
in contrast with many other genetic algorithms. BSA 
randomly chooses the direction individual from individuals 
of a randomly chosen previous generation. BSA uses a non-
uniform crossover strategy that is more complex than the 
crossover strategies used in many genetic algorithms. 
   This paper uses test set to examine the success of BSA 
and the comparison algorithms in solving numerical 
optimization problems. The test set includes 10 widely used 
standard benchmark problems [2]. 
 

2. BSA- BACKTRACK SEARCH OPTIMIZATION 

ALGORITHM 
        BSA is a population-based iterative EA designed to be 
a global minimizer [1]. BSA can be explained by dividing 
its functions into five processes as is done in other EAs: 
initialization, selection-I, mutation, crossover and selection-
II. 
 

 
2.1 Initialization 
        BSA initializes the population P with Eq. (1): 
     Pi, j ~ U (lowj , upj)                          (1) 
 
for i = 1,2,3,...,N and j = 1,2,3,...,D, where N and D are the 
population size and the problem dimension, respectively, U 
is the uniform distribution and each Pi is a target individual 
in the population P. 
 
2.2 Selection-I  
    BSA’s Selection-I stage determines the historical 
population oldP to be used for calculating the search 
direction. The initial historical population is determined 
using Eq. (2): 
 
     oldPi , j ~ U(lowj,upj)                                        (2) 
 
BSA has the option of redefining oldP at the beginning of 
each iteration through the ‘if-then’ rule in Eq. (3): 
 
if a < b then oldP := P | a, b ~ U(0, 1),                              (3) 
 
where :=  is the update operation. Eq. (3) ensures that BSA 
designates a population belonging to a randomly selected 

previous generation as the historical population and 
remembers this historical population until it is changed. 
Thus, BSA has a memory. After oldP is determined, Eq. (4) 
is used to randomly change the order of the individuals in 
oldP: 
 
     oldP := permuting(oldP)           (4) 
 
The permuting function used in Eq. (4) is a random 
shuffling function. 
 
2.3 Mutation  
    BSA’s mutation process generates the initial form of the 
trial population Mutant using Eq. (5) 
 
Mutant = P + F. (oldP – P),                                              (5) 
 
        In Eq. (5), F controls the amplitude of the search-
direction matrix (oldP - P). Because the historical 
population is used in the calculation of the search-direction 
matrix, BSA generates a trial population, taking partial 
advantage of its experiences from previous generations. 
This paper uses the value          F = 3.rndn, where rndn 
~N(0, 1) (N is the standard normal distribution). 
 
2.4 Crossover 
     BSA’s crossover process generates the final form of the 
trial population T. The initial value of the trial population is 
Mutant, as set in the mutation process. Trial individuals 
with better fitness values for the optimization problem are 
used to evolve the target population individuals. BSA’s 
crossover process has two steps. The first step calculates a 
binary integer-valued matrix (map) of size N. D that 
indicates the individuals of T to be manipulated by using 
the relevant individuals of P. If map n, m = 1, where n ϵ 
{1,2,3…,N} and    m ϵ {1,2,3…,D}, T is updated with T n, 

m := P n ,m 

     In Algorithm-2 (on line 3) indicates the ceiling function, 
defined as rnd ~ U (0, 1). BSA’s crossover strategy is quite 
different from the crossover strategies used in EA’s and its 
variants. 
Algorithm 2 shows a BSA’s unique crossover strategy 

 
    The mix rate parameter (mixrate) in BSA’s crossover 
process controls the number of elements of individuals  that 
will mutate in a trial by using ceil (mixrate. rnd. D) 
(Algorithm-2, line-3). The function of the mix rate is quite 
different from the crossover rate used in EA’s. 
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    Two predefined strategies are randomly used to define 
BSA’s map. The first strategy uses mixrate (Algorithm 2, 
lines 2-4). The second strategy allows only one randomly 
chosen individual to mutate in each trial (Algorithm-2, line-
6). BSA’s crossover process is more complex than the 
process used in EA’s. 
    Some individuals of the trial population obtained at the 
end of BSA’s crossover process can overflow the allowed 
search space limits as a result of BSA’s mutation strategy. 
The individuals beyond the search-space limits are 
regenerated using Algorithm-3. 
 

 
2.5 Selection-II 
In BSA’s Selection-II stage, the Ti’s that have better fitness 
values than the corresponding Pi’s are used to update the 
Pi’s based on a greedy selection. If the best individual of P 
(Pbest) has a better fitness value than the global minimum 
value obtained so far by BSA, the global minimizer is 
updated to be Pbest , and the global minimum value is 
updated to be the fitness value of Pbest . The structure of 
BSA is quite simple; thus it is easily adapted to different 
numerical optimization problems. 
 

3. PARAMETER SETTINGS AND TEST FUNCTIONS 
     In this section of the paper, the performance of the 
proposed algorithm is investigated, considering a set of 10 
benchmark test functions. These test functions are widely 
used in the scientific literature to test optimization 
algorithms. Note that most of the test functions have many 
local minima so that they are challenging enough for 
performance evaluation. 
3.1 Test Functions 
     Ten widely used functions have been chosen from [2] as 
test functions, and the proposed algorithm in this paper was 
tested for all of them. These functions are shown in the 
Appendix of the paper. A few descriptive characteristics of 
a class of some very popular test functions (out of the 10 
functions) are provided in Table 1. The basic parameters of 
all 10 test functions are listed in Table 1, including search 
space limits, their dimension, and their global minimum. 
       For all 20 test functions, the results obtained by GAAPI 
are compared to other well-known evolutionary based 
optimization methods. 
3.2 Parameter values for BSA 
     The values of the parameters of BSA that have been 
used for the global optimization of the 10 test functions are 
given. The population size of BSA is variable and depends 
on the current iteration and the number of unsuccessful sites 
memorized until the recruitment process. 
 

TABLE I  CHARECTERISTICS OF BENCHMARK FUNCTIONS 
 

Test 
Function 

Search Space 
Global 
Minima 

Dimension(n) 

F1 [-500,500]n -12569.5 30 
F2 [-5.12,5.12]n 0 30 
F3 [-32,32]n 0 30 
F4 [-600,600]n 0 30 
F5 [-100,100]n 0 30 
F6 [-5,5]n -1.0316 2 
F7 [-5,10]x[0,15] 0.398 2 
F8 [-2,2]n 3 2 
F9 [-5,5]n -78.3324 100 

F10 [-10,10]n 0 30 
 

 
TABLE II PERFORMANCE OF BSA OVER THE 10 TEST FUNCTIONS 

 
4. EMPIRICAL PROOF OF CONVERGENCE:      

 RESULTS AND ANALYSIS 
     The algorithm was executed in 50 independent runs for 
each test function, to keep the same base of comparison. 
The algorithm was implemented in MATLAB R2012a on a 
Intel CORETM i5 personal computer with a 3.6 GHz 
processor. The following data are recorded: the global 
minimum and the average CPU time of 50 independent runs 
denoted by CPU. The last analysis component gives a fair 
indication about the effectiveness of the algorithm in real 
problems. The aforementioned parameters are generally 
accepted indicators of performance when referring to 
heuristic global optimization algorithms. Note that CPU 
time, together with the PC platform on which the algorithm 
was executed, is only provided for comparison reasons to 
other works which used this indicator. 
    BSA responds very well, particularly for complex 
functions with higher dimensionality (N=100 or N=30, such 
as in F1-F5, F9, F10). Table II provides a comparison of the 
computational time required for BSA and other heuristic 
methods for determining the global optimal solution. 
Results on other methods are obtained from [11]. 
     The initials of the algorithms referenced in this paper are 
presented in Table III. A brief description of some of these 

Function Algorithm used and CPU time (s) 

F1 
HTGA CPSO-H6 LEA GAAPI BSA 
689.30 658.70 656.30 30.59 9.01 

F2 
HTGA CPSO-H6 LEA GAAPI BSA 
607.50 557.70 557.20 27.07 8.96 

F3 
ALEP CPSO-H6 LEA GAAPI BSA 
359.30 326.80 326.10 18.26 9.85 

F4 
HTGA CPSO-H6 LEA GAAPI BSA 
373.80 368.10 365.60 37.28 9.77 

F5 
HTGA CPSO-H6 LEA GAAPI BSA 
312.50 242.60 240.20 35.64 9.10 

F6 
HTGA ALEP LEA GAAPI BSA 
31.60 31.10 30.80 23.83 6.86 

F7 
HTGA ALEP LEA GAAPI BSA 
31.10 31.10 30.60 27.87 6.12 

F8 
HTGA ALEP LEA GAAPI BSA 
35.40 34.00 33.50 27.20 6.26 

F9 
ALEP CPSO-H6 LEA GAAPI BSA 
782.70 685.80 612.30 37.93 29.60 

F10 
HTGA CPSO-H6 LEA GAAPI BSA 
322.60 243.00 240.80 37.56 9.02 
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algorithms is presented in [2]. It should be noted that in the 
literature selected for comparison for the purposes of this 
work, the same number of function evaluations for each 
algorithm was not available. Thus, the comparison below 
gives this measure only to sustain a quasi-comparison on 
the speed of convergence of different heuristic algorithms 
toward a near global solution as denoted by the authors as 
the best-mean solution over a number of independent runs. 

 
TABLE III NOTATIONS OF THE ALGORITHMS USED FOR COMPARISON 

 

     As the computational effort is very important, 
particularly to actual problems that need to be solved in real 
time, BSA may be considered as a useful optimization tool 
based on the computational time required determining the 
global optimum. 
 

5. CONCLUSION 
     In this paper, a new algorithm, called BSA, was 
proposed to solve global unconstrained continuous 
optimization problems. BSA’s algorithmic structure enables 
it to benefit from previous generation populations by using 
solutions it has found in the past for a given problem as it 
searches for solutions with better fitness values. BSA’s bio-
inspired philosophy is analogous to the return of a social 
group of living creatures at random intervals to hunting 
areas that were previously found fruitful for obtaining 
nourishment. 
     The values obtained through BSA algorithm are 
compared with other evolutionary algorithms to prove that 
BSA is more efficient in terms of CPU utilization time (as it 
is faster than most of the comparison algorithms) as well as 
in determining global optimum solution. It was proven that 
in most of the cases presented in this paper BSA provided 
satisfactory or optimum solutions, with very little 
computational effort. The algorithm is recommended for 
large, complex problems with a dimensionality greater than 
30. The detailed tests discussed in 
 this paper demonstrates that BSA is statistically successful 
in solving real-valued numerical optimization problems. 
          The factors responsible for BSA’s greater success 
relative to the comparison algorithms are as follows: 
 BSA’s mutation and crossover operators produce  very 

efficient trial populations in each generation.  
  BSA’s generation strategy for the parameter F, which 

controls the amplitude of the search direction, can 
produce both numerically large amplitude values 
necessary for a global search and the small amplitude 
values necessary for a local search in a very balanced 
and efficient manner. This clearly enhances BSA’s 
problem-solving ability.  

  The historical population (oldP) that BSA uses for the 
calculation of the search-direction matrix belongs to a 
randomly selected previous generation. Thus, the 
historical populations used in more advanced 
generations include more efficient individuals relative 
to the historical populations used in older generations. 
This facilitates BSA’s generation of more efficient trial 
individuals.  

  BSA’s crossover strategy has a non-uniform and 
complex structure that ensures creation of new trial 
individuals in each generation. This crossover strategy 
enhances BSA’s problem-solving ability.  

 BSA’s boundary control mechanism is very effective 
in achieving population diversity, which ensures 
efficient searches, even in advanced generations. 

Other Evolutionary Algorithms may further improve the 
quality of the solution in difficult global optimization 
problems, but a difficulty in implementation could appear 
due to the complicated forms of the operators to be used. 
There may also be value in concentrating on comparisons 
of BSA to other evolutionary algorithms which may relate 

to GA, PSO and other local search mechanisms. This study 
focused mainly on continuous domain optimization 
problems, so further work can be addressed to see the 
applicability of the proposed algorithm to discrete as well 
as constrained optimization problems. 
   

6. APPENDIX 
The functions used for testing the proposed algorithm are 
provided below. These are taken from [2], [11]. 

 

 

 

 

 

 

 
 

 

 
 

Notation Description 

ALEP 
Evolutionary programming with adaptive Levy 
mutation 

CPSO-H6 

Hybrid cooperative particle swarm optimization. 
API- special class of continuous domain ant colony 
optimization search based on the Monmarche  
approach[10] 

LEA Level-set evolution and Latin squares algorithm 
HTGA Hybrid Taguchi- genetic algorithm 

GAAPI 
Hybrid Ant Colony-Genetic Algorithm for global 
continuous optimization 
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