
Comparative Analysis of Backtrack Search
Optimization Algorithm (BSA) with other Evolutionary

Algorithms for Global Continuous Optimization.
Shovan Mandal#1, Rohit Kumar Sinha#2, Kamal Mittal#3

#1Computer Science and Engineering, #2Electrical and Electronics Engineering, #3Electrical and Electronics Engineering
National Institute of Technology, Warangal

Warangal, Telangana, India

Abstract- In the real world scenario we come across the
problem of optimization a number of times. Finding the best
solution among the available set of solutions becomes
mandatory. A number of numerical techniques are already
present in literature which aims at optimizing the result
however, they are not feasible to be used in each type of
problem. Hence we are tending towards evolutionary
algorithms which are more powerful tools to fetch the best
results without using any set formulae. A Number of
algorithms are already available in literature however they
have a problem of getting stuck in local minima or their time
of convergence is too high. In this paper I have implemented
Backtracking Search Optimization Algorithm (BSA). BSA
uses two set of populations i.e. old and new which prevents it
from getting stuck into local minima. Its selection, crossover
and mutation processes are different from the other methods
and it yields the most optimized solution in lesser time. The
claim is supported by the results of its comparison with
different techniques and BSA is proved to give better results
and in lesser time.

Keywords— Backtrack Search Algorithm (BSA), global
continuous optimization, Hybrid Ant colony-Genetic
Algorithm (GAAPI)

1. INTRODUCTION

Decision science and the analysis of physical system
attach great importance to optimization techniques.
GLOBAL optimization in operations research and computer
science refers to the procedure of finding approximate
solutions, which are considered the best possible solutions,
to objective functions [3], subject to constraints on their
variables.

Ideally, the approximation is optimal up to a small
constant error, for which the solution is considered to be
satisfactory. In general, there can be solutions that are
locally optimal, but not globally optimal; this situation
appears more frequently when the dimension of the
problem is high and when the function has many local
optima [4]. Consequently, global optimization problems are
typically quite difficult to be solved exactly, particularly in
the context of nonlinear problems or combinatorial
problems. Global optimization problems fall within the
broader class of nonlinear programming. It should be noted
that approximation algorithms are increasingly being used
for problems where exact polynomial algorithms are known
but are computationally expensive due to the

dimensionality of these problems. This paper focuses on the
general global optimization problems in the continuous
domain, having a nonlinear objective function that is either
unconstrained or that has simple bound constraints.

In the last three decades, a significant research effort was
focused on the development of effective and efficient
stochastic methods that could reach the nearest global
optimal solution. In this class of methods, evolutionary
computation (EC) is one of the favourite methodologies,
using techniques that exploit a set of potential solutions
(called a population) to detect the optimal solution through
cooperation and competition among the individuals of the
population.

These techniques often find the optima for difficult
optimization problems faster than traditional adaptive
stochastic search algorithms. The most frequently used
population-based EC methods include evolutionary
strategies genetic algorithms (GAs) [7]-[8], ant colony
optimization (ACO/API)[9]-[10], and particle swarm
optimization (PSO) [6]. One of the issues that probabilistic
optimization algorithms might face in solving global, highly
non convex optimization problems is premature
convergence. When the objective function for an
optimization problem is non-linear and non-differentiable,
evolutionary algorithm (EA) techniques are typically used
to find the global optimum. The most commonly used EA
optimization techniques are based on swarm intelligence
and genetic evolution.

EAs are population-based stochastic search mechanisms
that search for near-optimal solutions to a problem. An EA
tries to evolve an individual into one with a better fitness
value through a ‘trial individual’. To generate a trial
individual, the EA chooses existing individuals as raw
genetic material and combines these using various genetic
operators. If the trial individual has a better fitness value
than the original individual, the trial individual replaces it in
the next-generation population. EAs radically differ from
one another based on their strategies for generating trial
individuals. Because these strategies have a considerable
effect on their problem-solving success and speed, on-going
efforts are aimed at developing EAs with faster and more
successful problem-solving processes.

The algorithm implemented in this paper, BSA, is a new
Evolutionary Algorithm. BSA is a new nature-inspired
algorithm is effective, fast and capable of solving different

Shovan Mandal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3237-3241

www.ijcsit.com 3237

numerical optimization problems with a simple structure [5].
BSA’s unique mechanism for generating a trial individual
enables it to solve numerical optimization problems
successfully and rapidly. BSA uses three basic genetic
operators– selection, mutation and crossover – to generate
trial individuals. BSA has a random mutation strategy that
uses only one direction individual for each target individual,
in contrast with many other genetic algorithms. BSA
randomly chooses the direction individual from individuals
of a randomly chosen previous generation. BSA uses a non-
uniform crossover strategy that is more complex than the
crossover strategies used in many genetic algorithms.
 This paper uses test set to examine the success of BSA
and the comparison algorithms in solving numerical
optimization problems. The test set includes 10 widely used
standard benchmark problems [2].

2. BSA- BACKTRACK SEARCH OPTIMIZATION

ALGORITHM
 BSA is a population-based iterative EA designed to be
a global minimizer [1]. BSA can be explained by dividing
its functions into five processes as is done in other EAs:
initialization, selection-I, mutation, crossover and selection-
II.

2.1 Initialization
 BSA initializes the population P with Eq. (1):
 Pi, j ~ U (lowj , upj) (1)

for i = 1,2,3,...,N and j = 1,2,3,...,D, where N and D are the
population size and the problem dimension, respectively, U
is the uniform distribution and each Pi is a target individual
in the population P.

2.2 Selection-I
 BSA’s Selection-I stage determines the historical
population oldP to be used for calculating the search
direction. The initial historical population is determined
using Eq. (2):

 oldPi , j ~ U(lowj,upj) (2)

BSA has the option of redefining oldP at the beginning of
each iteration through the ‘if-then’ rule in Eq. (3):

if a < b then oldP := P | a, b ~ U(0, 1), (3)

where := is the update operation. Eq. (3) ensures that BSA
designates a population belonging to a randomly selected

previous generation as the historical population and
remembers this historical population until it is changed.
Thus, BSA has a memory. After oldP is determined, Eq. (4)
is used to randomly change the order of the individuals in
oldP:

 oldP := permuting(oldP) (4)

The permuting function used in Eq. (4) is a random
shuffling function.

2.3 Mutation
 BSA’s mutation process generates the initial form of the
trial population Mutant using Eq. (5)

Mutant = P + F. (oldP – P), (5)

 In Eq. (5), F controls the amplitude of the search-
direction matrix (oldP - P). Because the historical
population is used in the calculation of the search-direction
matrix, BSA generates a trial population, taking partial
advantage of its experiences from previous generations.
This paper uses the value F = 3.rndn, where rndn
~N(0, 1) (N is the standard normal distribution).

2.4 Crossover
 BSA’s crossover process generates the final form of the
trial population T. The initial value of the trial population is
Mutant, as set in the mutation process. Trial individuals
with better fitness values for the optimization problem are
used to evolve the target population individuals. BSA’s
crossover process has two steps. The first step calculates a
binary integer-valued matrix (map) of size N. D that
indicates the individuals of T to be manipulated by using
the relevant individuals of P. If map n, m = 1, where n ϵ
{1,2,3…,N} and m ϵ {1,2,3…,D}, T is updated with T n,

m := P n ,m

 In Algorithm-2 (on line 3) indicates the ceiling function,
defined as rnd ~ U (0, 1). BSA’s crossover strategy is quite
different from the crossover strategies used in EA’s and its
variants.
Algorithm 2 shows a BSA’s unique crossover strategy

 The mix rate parameter (mixrate) in BSA’s crossover
process controls the number of elements of individuals that
will mutate in a trial by using ceil (mixrate. rnd. D)
(Algorithm-2, line-3). The function of the mix rate is quite
different from the crossover rate used in EA’s.

Shovan Mandal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3237-3241

www.ijcsit.com 3238

 Two predefined strategies are randomly used to define
BSA’s map. The first strategy uses mixrate (Algorithm 2,
lines 2-4). The second strategy allows only one randomly
chosen individual to mutate in each trial (Algorithm-2, line-
6). BSA’s crossover process is more complex than the
process used in EA’s.
 Some individuals of the trial population obtained at the
end of BSA’s crossover process can overflow the allowed
search space limits as a result of BSA’s mutation strategy.
The individuals beyond the search-space limits are
regenerated using Algorithm-3.

2.5 Selection-II
In BSA’s Selection-II stage, the Ti’s that have better fitness
values than the corresponding Pi’s are used to update the
Pi’s based on a greedy selection. If the best individual of P
(Pbest) has a better fitness value than the global minimum
value obtained so far by BSA, the global minimizer is
updated to be Pbest , and the global minimum value is
updated to be the fitness value of Pbest . The structure of
BSA is quite simple; thus it is easily adapted to different
numerical optimization problems.

3. PARAMETER SETTINGS AND TEST FUNCTIONS
 In this section of the paper, the performance of the
proposed algorithm is investigated, considering a set of 10
benchmark test functions. These test functions are widely
used in the scientific literature to test optimization
algorithms. Note that most of the test functions have many
local minima so that they are challenging enough for
performance evaluation.
3.1 Test Functions
 Ten widely used functions have been chosen from [2] as
test functions, and the proposed algorithm in this paper was
tested for all of them. These functions are shown in the
Appendix of the paper. A few descriptive characteristics of
a class of some very popular test functions (out of the 10
functions) are provided in Table 1. The basic parameters of
all 10 test functions are listed in Table 1, including search
space limits, their dimension, and their global minimum.
 For all 20 test functions, the results obtained by GAAPI
are compared to other well-known evolutionary based
optimization methods.
3.2 Parameter values for BSA
 The values of the parameters of BSA that have been
used for the global optimization of the 10 test functions are
given. The population size of BSA is variable and depends
on the current iteration and the number of unsuccessful sites
memorized until the recruitment process.

TABLE I CHARECTERISTICS OF BENCHMARK FUNCTIONS

Test
Function

Search Space
Global
Minima

Dimension(n)

F1 [-500,500]n -12569.5 30
F2 [-5.12,5.12]n 0 30
F3 [-32,32]n 0 30
F4 [-600,600]n 0 30
F5 [-100,100]n 0 30
F6 [-5,5]n -1.0316 2
F7 [-5,10]x[0,15] 0.398 2
F8 [-2,2]n 3 2
F9 [-5,5]n -78.3324 100

F10 [-10,10]n 0 30

TABLE II PERFORMANCE OF BSA OVER THE 10 TEST FUNCTIONS

4. EMPIRICAL PROOF OF CONVERGENCE:

 RESULTS AND ANALYSIS
 The algorithm was executed in 50 independent runs for
each test function, to keep the same base of comparison.
The algorithm was implemented in MATLAB R2012a on a
Intel CORETM i5 personal computer with a 3.6 GHz
processor. The following data are recorded: the global
minimum and the average CPU time of 50 independent runs
denoted by CPU. The last analysis component gives a fair
indication about the effectiveness of the algorithm in real
problems. The aforementioned parameters are generally
accepted indicators of performance when referring to
heuristic global optimization algorithms. Note that CPU
time, together with the PC platform on which the algorithm
was executed, is only provided for comparison reasons to
other works which used this indicator.
 BSA responds very well, particularly for complex
functions with higher dimensionality (N=100 or N=30, such
as in F1-F5, F9, F10). Table II provides a comparison of the
computational time required for BSA and other heuristic
methods for determining the global optimal solution.
Results on other methods are obtained from [11].
 The initials of the algorithms referenced in this paper are
presented in Table III. A brief description of some of these

Function Algorithm used and CPU time (s)

F1
HTGA CPSO-H6 LEA GAAPI BSA
689.30 658.70 656.30 30.59 9.01

F2
HTGA CPSO-H6 LEA GAAPI BSA
607.50 557.70 557.20 27.07 8.96

F3
ALEP CPSO-H6 LEA GAAPI BSA
359.30 326.80 326.10 18.26 9.85

F4
HTGA CPSO-H6 LEA GAAPI BSA
373.80 368.10 365.60 37.28 9.77

F5
HTGA CPSO-H6 LEA GAAPI BSA
312.50 242.60 240.20 35.64 9.10

F6
HTGA ALEP LEA GAAPI BSA
31.60 31.10 30.80 23.83 6.86

F7
HTGA ALEP LEA GAAPI BSA
31.10 31.10 30.60 27.87 6.12

F8
HTGA ALEP LEA GAAPI BSA
35.40 34.00 33.50 27.20 6.26

F9
ALEP CPSO-H6 LEA GAAPI BSA
782.70 685.80 612.30 37.93 29.60

F10
HTGA CPSO-H6 LEA GAAPI BSA
322.60 243.00 240.80 37.56 9.02

Shovan Mandal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3237-3241

www.ijcsit.com 3239

algorithms is presented in [2]. It should be noted that in the
literature selected for comparison for the purposes of this
work, the same number of function evaluations for each
algorithm was not available. Thus, the comparison below
gives this measure only to sustain a quasi-comparison on
the speed of convergence of different heuristic algorithms
toward a near global solution as denoted by the authors as
the best-mean solution over a number of independent runs.

TABLE III NOTATIONS OF THE ALGORITHMS USED FOR COMPARISON

 As the computational effort is very important,
particularly to actual problems that need to be solved in real
time, BSA may be considered as a useful optimization tool
based on the computational time required determining the
global optimum.

5. CONCLUSION
 In this paper, a new algorithm, called BSA, was
proposed to solve global unconstrained continuous
optimization problems. BSA’s algorithmic structure enables
it to benefit from previous generation populations by using
solutions it has found in the past for a given problem as it
searches for solutions with better fitness values. BSA’s bio-
inspired philosophy is analogous to the return of a social
group of living creatures at random intervals to hunting
areas that were previously found fruitful for obtaining
nourishment.
 The values obtained through BSA algorithm are
compared with other evolutionary algorithms to prove that
BSA is more efficient in terms of CPU utilization time (as it
is faster than most of the comparison algorithms) as well as
in determining global optimum solution. It was proven that
in most of the cases presented in this paper BSA provided
satisfactory or optimum solutions, with very little
computational effort. The algorithm is recommended for
large, complex problems with a dimensionality greater than
30. The detailed tests discussed in
 this paper demonstrates that BSA is statistically successful
in solving real-valued numerical optimization problems.
 The factors responsible for BSA’s greater success
relative to the comparison algorithms are as follows:
 BSA’s mutation and crossover operators produce very

efficient trial populations in each generation.
 BSA’s generation strategy for the parameter F, which

controls the amplitude of the search direction, can
produce both numerically large amplitude values
necessary for a global search and the small amplitude
values necessary for a local search in a very balanced
and efficient manner. This clearly enhances BSA’s
problem-solving ability.

 The historical population (oldP) that BSA uses for the
calculation of the search-direction matrix belongs to a
randomly selected previous generation. Thus, the
historical populations used in more advanced
generations include more efficient individuals relative
to the historical populations used in older generations.
This facilitates BSA’s generation of more efficient trial
individuals.

 BSA’s crossover strategy has a non-uniform and
complex structure that ensures creation of new trial
individuals in each generation. This crossover strategy
enhances BSA’s problem-solving ability.

 BSA’s boundary control mechanism is very effective
in achieving population diversity, which ensures
efficient searches, even in advanced generations.

Other Evolutionary Algorithms may further improve the
quality of the solution in difficult global optimization
problems, but a difficulty in implementation could appear
due to the complicated forms of the operators to be used.
There may also be value in concentrating on comparisons
of BSA to other evolutionary algorithms which may relate

to GA, PSO and other local search mechanisms. This study
focused mainly on continuous domain optimization
problems, so further work can be addressed to see the
applicability of the proposed algorithm to discrete as well
as constrained optimization problems.

6. APPENDIX
The functions used for testing the proposed algorithm are
provided below. These are taken from [2], [11].

Notation Description

ALEP
Evolutionary programming with adaptive Levy
mutation

CPSO-H6

Hybrid cooperative particle swarm optimization.
API- special class of continuous domain ant colony
optimization search based on the Monmarche
approach[10]

LEA Level-set evolution and Latin squares algorithm
HTGA Hybrid Taguchi- genetic algorithm

GAAPI
Hybrid Ant Colony-Genetic Algorithm for global
continuous optimization

Shovan Mandal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3237-3241

www.ijcsit.com 3240

REFERENCES
[1] Pinar Civicioglu, “Backtracking Search Optimization

Algorithm for numerical optimization problems”, Elsevier
Trans. Applied Mathematics and Computation pp. 8121- 44,
2013.

[2] Y. Wang and C. Dang, “An evolutionary algorithm for global
optimization based on level-set evolution and Latin squares,”
IEEE Trans. Evol. Comput., vol. 11, no. 5, pp. 579–595, Oct.
2007.

[3] Y.-W. Leung and Y. Wang, “An orthogonal genetic algorithm
with quantization for global numerical optimization,” IEEE
Trans. Evol. Comput., vol. 5, no. 1, pp. 41–53, Feb. 2001

[4] T. Weise, Global Optimization Algorithms: Theory and
Applications 2009.

[5] D. Karaboga, B. Basturk, A powerful and efficient algorithm
for numerical function optimization: artificial bee colony
(ABC) algorithm, J. Global. Optim. 39 (2007) 459–471.

[6] K. E. Parsopoulos and M. N. Vrahatis, “On the computation of
all global minimizers through particle swarm optimization,”
IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 211–224, Jun.
2004.

[7] Z. Michalewicz, Genetic Algorithms + Data Structures =
Evolution Programs, 2nd ed. New York: Springer-Verlag,
1994.

[8] Z. Tu and Y. Lu, “A robust stochastic genetic algorithm (StGA)
for global numerical optimization,” IEEE Trans. Evol.
Comput., vol. 8, no. 5, pp. 456–470, Oct. 2004.

[9] M. Dorigo and T. Stützle, Ant Colony Optimization. Scituate,
MA: Bradford Company, 2004.

[10] N. Monmarche, G. Venturini, and M. Slimane, “On how
Pachycondyla apicalis ants suggest a new search algorithm,”
Future Gener. Comput. Syst., vol. 16, no. 8, pp. 937–946, Jun.
2000.

[11] I. Ciornei and E. Kyriakides, “Hybrid Ant Colony-Genetic
Algorithm(GAAPI) for global Continuous Optimization”, IEEE
Trans. Systems, MAN, and cybernetics, vol.42, no.1, Feb 2012.

Shovan Mandal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3237-3241

www.ijcsit.com 3241

